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ABSTRACT

We introduce a novel mosaic synthesis algorithm for mu-
sical style transfer using the autocorrelogram as a feature
map. We decompose the autocorrelogram feature map
sparsely in a decaying sinusoid basis, using that decom-
position as an interpolation scheme in feature space. This
efficiently provides gradient information in the mosaic-
ing optimization, including gradients of the challenging
time-scale parameters, which are usually computationally
intractable for discretely sampled signals. The required
calculations are straightforward to parallelize on vector-
processing hardware. Our implementation of the method
provides good quality output and novel musical effects in
example tasks by itself and can also be integrated into al-
ternative mosaicing methods.

1. INTRODUCTION

Mosaicing synthesis is a particular approach to the style
transfer problem. As with all style transfer methods, the
goal is combining two signals, a source, and a target,
to produce a hybrid output signal with qualities of each,
which we call a mosaic. A musical application of these
methods would typically use the ‘style’ of one signal, the
timbre, to express the ‘content’ of another, a melody. Con-
cretely, if the target were a trumpet playing a melody, and
the source a recording of a singing vocalist, the mosaic
might aim to emulate the vocalist singing that melody.

There exist a variety of problem definitions of, and as-
sociated algorithms for, mosaicing synthesis; e.g. [8, 12,
13, 22, 23, 35, 41, 45], partially summarized in [32]. In
mosaicing specifically, we accomplish style transfer us-
ing a dictionary-based granular synthesis method, which
constructs its output by superposition of transformed short
recordings, grains, from an audio dictionary, in the time or,
more recently, spectral domains [1, 7, 16].

The granular synthesis methods in themselves are well
understood and widely deployed in industrial applications.
They comprise a significant proportion of the music indus-
try market for software synthesizers, are integrated into ev-
ery major Digital Audio Workstation package, and have
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been extensively researched – see e.g. [31] and references
therein.

The extension of granular synthesis into a style-transfer
problem as mosaicing is less well-understood. In this set-
ting we choose the parameters of a granular synthesis so as
to optimally approximate a desired target audio signal in
the sense of optimising some measure of acoustic similar-
ity. Typically, this implies approximating, in the sense of
minimising some approximation loss, the power spectral
density (PSD) of the target signal. Applications for this in-
clude musical accompaniment, creative musical effects, or
user customization of speech synthesis [10].

Our sparse autocorrelogram method advances the capa-
bilities of musical mosaicing applications, by leveraging a
feature map that is related to, but more convenient than,
classical PSD methods. This method is enabled by two
major innovations.

Firstly, we define signal similarity through the autocor-
relogram, a representation of the signal as covariance with
delayed versions of itself. The autocorrelogram and its re-
lationship to PSD is well-known (e.g. [44]) but our use in
mosaicing synthesis appears novel. Although we use the
autocorrelogram in a standalone procedure, it may be in-
cluded in the feature vectors of loss functions of other mo-
saic techniques and is thus of independent interest.

Secondly, we decompose the high-dimensional empir-
ical autocorrelogram into a sparse dictionary of decaying
sinusoids. By interpolating discrete signals, this procedure
calculates both error and gradients efficiently, enabling
gradient-based optimization. The resulting technique is
flexible and straightforward to parallelize on modern Sin-
gle Instruction Multiple Data (SIMD) architectures such as
Graphics Processing Units (GPUs).

We make our Python code 1 openly available for public
use. We thereby aim to facilitate both the investigations of
future researchers and the immediate application of these
methods by musicians. Comparisons are made with bench-
mark mosaicing implementation, NiMFKS [7].

2. PRIOR WORK

Style transfer techniques, construed broadly, have a long
history in signal processing research. Early work in this
area begins with the channel vocoder [17], via various in-
novations to the modern repertoire of methods which in-
cludes innovations such as neural style transfer methods

1 https://github.com/danmackinlay/mosaicing_
omp_ismir_2019/
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[19, 21, 43]. In the style transfer field, the mosaicing tech-
niques form a sub field which fix a choice of synthesis to
dictionary-based granular synthesis techniques.

We are concerned with the musical applications of style
transfer. The archetypal task in this context is using the
timbre of the ‘style’ signal to express the melodic ‘content’
of another. Concretely, if the target were a trumpet playing
a melody, and the source a recording of a singing vocalist,
the output should emulate the vocalist singing that melody.

In mosaicing synthesis, the task of choosing synthesis
parameters to produce the desired output is non-trivial and
subject of ongoing interest. Notable recent progress in-
cludes matrix factorization methods to decompose audio
[1, 7, 16], various improvements in spectral matrix factor-
ization [1, 7, 16] and optimization over features [8, 11, 36].
However, few methods can conveniently handle time-
scaling of audio, so that time-scale parameters must be
ignored, or selected by exhaustive search. One recent ex-
ception is Sound Retiler [1], which claims to handle time
shifting via tensor decomposition. It is in this area that we
make our main contribution, by the application of autocor-
relogram features in this task.

While the autocorrelogram itself is not new in audio
synthesis (e.g. [38]), our application to the mosaicing prob-
lem seems novel. The autocorrelogram-based analysis in
combination with sparse coding induces a novel and ana-
lytically differentiable expression for the time scale param-
eter, and it is this we use to solve the mosaic problems.

3. PROBLEM DESCRIPTION

3.1 Audio signals and notation

We work with audio signals, a Hilbert space H of real
L2 functions f : R → R mapping time to instanta-
neous signal pressure level. Where the argument of the
signal is clear, we abbreviate notation, writing for exam-
ple, t 7→ f(at) as f(at). We will handle transforms on
signals f(.) such as the autocorrelogram A, and Fourier
transform F . Where not clear from context which argu-
ment of the signal with respect to which the transform is
taken, we indicate it with a subscript to the transform. Thus
Ft{f(s, t)}(ξ) :=

∫
e−2πitξf(s, t)dt.Where we specify a

weight v for the inner product or norm, we write it as a
subscript, i.e. 〈f, g〉v :=

∫
R v(t)f(t)g(t)dt.

In practice we do not observe continuous audio signals,
but discretely sampled observations of signals. Sampling
fidelity will be assumed, requiring signals are band-limited
to some suitably low cutoff period Ω.We scale time so that
the sample period T = 1 and Ω > 1/2. The sampling
process is a train of Dirac impulses, and inner products
with a discrete signals are defined

〈g, f〉v :=
∑
t∈Z

v(t)g(t)f(t). (1)

We denote length-M vectors in bold, x =
[x1, x2, . . . , xM ]ᵀ.

3.2 Mosaicing

Given a target signal f0, we seek an approximant, the mo-
saic f̂0, as a sparse linear combination of scaled signals,
called codes, from a source dictionary G := {g1, . . . , gD}
subject to a maximum budget of J codes. In our earlier
style transfer example, say, f0 would be the recorded trum-
pet melody and G, recordings of the singing vocalist. For a
fixed dictionary the mosaic is specified completely by the
length-J parameter vectors α,γ,ρ and written

f̂0(t;α,γ,ρ) =

J∑
j=1

αjgγj (ρjt). (2)

The problem requires selecting approximately optimal val-
ues for parameter vectors

{α,γ,ρ} ' argmin
{α,γ,ρ}

d
(
f̂0(t;α,γ,ρ), f0(t)

)
, (3)

where ρj ∈ R+, αj ∈ R, γj ∈ {1, . . . , D} and d :
H×H 7→ R+ is a distance function quantifying the poor-
ness of the approximation. In contrast to sparse coding
for signal compression, f̂0 is an intentionally imperfect ap-
proximation of f0, possessing qualities of both the source
and target signals, hence the designation style transfer.

4. AUTOCORRELATION MOSAICING METHOD

The autocorrelogram mosaicing method has two stages.

1. In the pre-training stage, autocorrelogram features
are computed from the source signals, and decom-
posed in a dictionary of decaying sinusoids.

2. In the inference stage, we search our dictionary of
autocorrelogram decompositions for matches to the
autocorrelogram of the target signal, and solve an in-
verse problem, synthesizing a corresponding mosaic
from our result.

Both stages leverage convenient properties of autocor-
relograms, and sparse dictionary decompositions, which
we now introduce.

4.1 Properties of autocorrelograms

We now motivate the use of the autocorrelogram in our
feature map. As with other style transfer methods we face
the challenge that sample values of a time domain audio
signal f are only indirectly indicative of how human lis-
teners will perceive it. For audio analysis, one typically
operates on a feature map P{f} which is in some sense
closer to human perception of these signals. Specifically,
we aim to find a feature map such that two signals are
similar if some distance between their feature vectors is
small, i.e. the similarity of f and f̂ is high iff the distance
dP(f, f̂) := ‖P{f0} − P{f̂}‖ is low, with some choice
of norm ‖ · ‖. We would like dP to approximate specifi-
cally psychoacoustic similarity, which is to say dP(f, f̂) is
small iff a typical human listener would perceive f and f̂



as similar. Ideally the image of the feature map should also
be of lower dimension than f , and dF should be computa-
tionally efficient to manipulate.

True psychoacoustic similarity is not well-defined, so
practical algorithms settle for feature maps compromis-
ing between convenience and psychoacoustic plausibility.
Usually, feature maps are empirical PSDs [8, 23], or are
derived from the PSD, as with the Mel-Frequency Cep-
stral Coefficient (MFCC) [27] or the Constant-Q transform
[6]. These maps induce expensive mosaicing optimization
problems [11, 12]. MFCCs for example, are suitable for
low-dimensional indexing and search but are hard to invert.
A raw empirical PSD is easier to invert, via, e.g. Griffin-
Lim iteration, but of the same order of dimensionality as
the original signal and thus difficult to search. One could
ameliorate this difficulty if a computationally convenient
feature map could be found which was well-behaved un-
der operations of scaling and superposition, as in Eq. 2, so
that one could conduct as much calculation as possible in
the feature space.

These desiderata suggest the autocorrelogram map

A{f} :ξ 7→ (ξ 7→ 〈f(t), f(t− ξ)〉) . (4)

This is the deterministic covariance between f(t) and
f(t − ξ). The autocorrelogram is an even function in
ξ, so we work with one-sided autocorrelograms R+ →
R. Autocorrelogram-like transforms are implicated in the
neurological processing of harmonic audio by human lis-
teners [3, 9, 25, 26]. For our purposes, the supposed neu-
rological basis is a secondary consideration to the demon-
strated empirical usefulness in psychoacoustic tasks, most
notably in pitch-detection [30, 37, 40]. In this regard it re-
sembles the cepstral analysis method [5], which also ef-
fectively identifies small numbers of periodic components
by analysing a pointwise non-linear transformation of the
power spectrogram , but unlike the cepstrum it is well-
behaved under superposition.

Specifically, brief calculation shows the following use-
ful properties: a) Multiplication by a constant c ∈ R:

A{cf}(ξ) = c2A{f}(ξ). (5)

b) Time scaling:

A{f(rt)}(ξ) =
1

r
A{f}

(
ξ

r

)
(6)

c) Randomized addition:

E [A{S1f + S2f
′}(ξ)] = A{f}(ξ) +A{f ′}(ξ), (7)

where {Si} are i.i.d. Rademacher variables, taking values
in {+1,−1} with equal probability.

We note two obstacles to the application of these for-
mulae in the mosaicing problem. Firstly, Eq. 6 is not well-
defined for the discrete signals that comprise the usual
subject matter of digital signal processing. We will han-
dle discrete signals by continuous interpolants, which turn
out to be practically sufficient approximations. Secondly,

the additive rule c) is valid only in expectation, via the
contrivance of introducing Rademacher random variables.
Solving for the deterministic case by accounting for phase
cancellation is indeed possible, but considerably more in-
volved, and indeed forms an active area of research in its
own right in, e.g. the Overlap-Add [15, 42], and phase re-
trieval [24,34] literatures. As the randomised solution also
turns out in practice to be already sufficient for many tasks,
we defer such extensions to future work.

In order to construct these interpolants efficiently, we
decompose discrete autocorrelograms using a matching
pursuit, which we now introduce.

4.2 Orthogonal matching pursuit

In orthogonal matching pursuit (OMP) [14, 28], given a
target signal f0 and a dictionary of code signals D =
{gθ}θ∈Θ, one finds a decomposition f̂0 = OMPD,K(f0)
of form

f0 ' OMP
D,K

(f0) :=

K∑
i=1

µigθi . (8)

A solution is a parameter vector [θ1, . . . , θK ] ∈ Θk and
code weights [µ1, . . . , µK ] ∈ RK which nearly mini-
mize ‖f0 − f̂0‖. We require that f0 and all codes gθ are
L2 integrable and not null, i.e. possessing positive norm,
‖gθ‖ > 0.

The OMP algorithm is as follows.

1. Initialization. Let the first residual be r0 := f. Set
step counter k ← 1.

2. Find θk such that (possibly approximately)

θk = argmax
θ

A(rk, gθ) (9)

where A is the normalized code product

A(rk, gθ) :=
〈rk−1, gθ〉
‖gθ‖

. (10)

3. Solve the least sum of squares problem

[µk1 , . . . µ
k
k] = argmin

[µ1,...,µk]

∥∥ ∑
1≤`≤k

µ`gθ` − f0

∥∥ (11)

giving kth decomposition f̂k =
∑

1≤`≤k µ`gθ` .

4. Update the residual rk+1 = f0 − f̂k.

5. If k = K, stop, otherwise set k ← k + 1 and repeat
from step (2).

We allow the components of θ to be either a) a discrete
and finite, or b) a continuous parameter. For finitely enu-
merable components θfinite ⊆ θ we maximize normalized
code product in Eq. 9 by enumeration. For continuous
components θcts ⊆ θ we assume that we can choose θcts



approximately by iterative optimization using the gradi-
ent∇θctsA(rk, gθ). As the objective may not attain a global
maximum, we choose I ≥ 1 different initial guesses, and
select the best local optimum attained. A first order gradi-
ent ascent with fixed number of steps performs well in our
examples and moreover requires no branching, and so we
may solve multiple optimizations simultaneously on SIMD
hardware.

4.3 Sparse approximate autocorrelograms

In the pre-training stage, we find autocorrelograms for
each of the empirical source autocorrelogram codes in
G, decomposing them into a dictionary of sparse OMP
matches, M. It is this dictionary which we search for mo-
saic matches, using matches here to identify approximately
matching codes in the original space G.

In this section we use ξ as the free argument for signals,
and restrict ξ > 0. For the interpolant dictionary we use
decaying sinusoids

S := {h(ξ;ω, τ, φ) := cos(ωξ + φ)e−τξ : φ, τ, ω ∈ R}.
(12)

The dictionary choice must ultimately be justified by
empirical performance, which we demonstrate in the final
section of the paper. It is notable that there are also a priori
reasons for favouring this one for musical audio. Firstly,
this basis will decompose an autocorrelogram into a global
approximant, rather than a piecewise interpolant, as with
for example polynomial splines. Evaluations of such an
interpolant are tractable to parallelise without branching
instructions, and therefore better suited to modern SIMD
architectures.

Secondly, decaying sinusoid models are effective in
compactly decomposing time-domain audio [20], and the
nature of the autocorrelogram suggests that they could be
similarly useful and even more compact in decomposing
autocorrelograms. The space of superpositions of decay-
ing sinusoids is, by inspection, closed under the autocor-
relogram transform, so it is at just as plausible to represent
autocorrelograms in a such a decaying sinusoid dictionary.
The question remains how compact such a representation
is. Analytic expansion of the superposition of many de-
caying sinusoids is a lengthy exercise in elementary calcu-
lus. However, we have reason to suspect that the amplitude
coefficient of most terms in such expansions will negligi-
ble. Recall the Wiener-Khintchine theorem, which says
that, for signals of finite energy, assuming all these terms
are well-defined,

Fξ{A{f}(ξ)}(s) = |Ft{f(t)}(s)|2

where Fξ{f(ξ)} is the Fourier transform of signal ξ 7→
f(ξ). This tells us that the magnitude of sinusoidal com-
ponents of the autocorrelogram are squared with respect to
the magnitude of sinusoidal components of the PSD, and
thus relatively sparser. This indicates that for autocorrelo-
grams of musical signals, which are well approximated by
a superposition of sinusoidal signals, the autocorrelogram
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Figure 1. The relatively simple form of (a) the PSD of
the autocorrelogram versus (b) the PSD of the signal it-
self. Signal is a length 2048 recording of a trumpet note
onset. The scale of the vertical axis is arbitrary, and sig-
nals have been normalized for comparison. Sample period
is 1/44100s.

could often be approximated with comparable relative er-
ror by a yet smaller number of sinusoidal signals, as can
be seen in Fig. 1. Moreover, we know that the envelope
of musical audio spectral content decays eventually super-
exponentially with frequency [18] and thus high frequency
content of an autocorrelogram will in general be propor-
tionally even lower. This latter fact additionally implies
that the autocorrelogram calculations might even be down-
sampled with little loss in information content, and some
computational saving.

Implementing the decomposition is straightforward.
For each code g ∈ G we perform the following calcula-
tion: First, we find the empirical autocorrelogram A{g} at
L points ξ = 0, 1, . . . , (L− 1) with Eq. 4.

Next, we decompose each Ĝ = OMPS,C(A{g}) over
the decaying sinusoid dictionary, as defined in Eq. 12.
There are many methods of fitting decaying sinusoids to
time series [2, 29, 33], but OMP is convenient in the cur-
rent application [20] as we may re-use the same algorithm
in the reconstruction stage of this algorithm. Autocorrel-
ograms of musical audio in our experiments are highly
sparse with respect to this decaying sinusoid dictionary,
typically achieving negligible residual error with number
of components C ≤ 4.

We will apply the OMP with product 〈·, ·〉v weighted by
v(ξ) := I{[0, L)}(ξ)/L, returning parameters {τi, ωi, φi}
and code weights µi. We first find the normalized code
product (Eq. 10) in closed form. Substituting in Eq. 12
gives



A(r(ξ), h(ξ;ω, τ, φ)}) =
〈ri(ξ), cos(ωξ + φ)eτξ〉v
‖ cos(ωξ + φ)eτξ‖v

.

(13)
The numerator is simply Eq. 1. Applying Euler identities
gives the denominator

‖ cos(ωξ + φ)e−τξ‖2v

=
1

2

∫ L

0

(1 + cos(2ωξ + 2φ))e−2τξdξ

= e−2ξτ

2
(ω sin(2ξω+2φ)−τ cos(2ξω+2φ))

4τ2+4ω2

∣∣∣ξ=L
ξ=0

+ 1−e−2Lτ

4τ

(14)
Combining Eq. 1 and Eq. 14 gives a closed form nor-

malized code product (Eq. 13), from which we can explic-
itly calculate gradients in τ, ω, φ as desired. Note that al-
though the original signal is discrete, our decomposition is
a continuous near-interpolant for it.

From these decompositions we construct the dictionary

M := {Ĝγ(ρξ) : γ ∈ (1, . . . , D), ρ ∈ R+}. (15)

4.4 Synthesizing the mosaic

In the second, inference, stage we construct a mosaic f̂0

given a target f0. Here we match the discrete autocor-
relogram F0 := A{f0} by a second OMP decomposition
F̂0 := OMPM,J(F0), into

F̂0(ξ) :=

J∑
j=1

κjĜγj (ρjξ) (16)

for index parameters {γi, ρi} and weights κi. The OMP
has already been introduced, but we pause to verify that
it may be applied to this new context. Since each Ĝγj is
a linear combination of decaying sinusoids (Eq. 12), the
normalizing denominator of the code product (Eq. 10) is
again a linear combination of decaying sinusoids, so its
integral has a (lengthy) closed form as a linear combination
of integrals (Eq. 14), and we can find an explicit gradient
∇ρA(rk, ρ). Thus we may find F̂0 as required.

Now we wish to construct f̂0 (Eq. 2) such that

E[A{f̂0}] = F̂0. (17)

Choosing f̂0 :=
∑
j Sjαjgγj (ρjt) by matching pursuit,

simulating Sj independent Rademacher variates, and ap-
plying Eqns. 5, 6, 7 to Eq. 2, we find

E[A{f̂0}] = E

A
∑

j

Sjαjgγj (ρjt)

 (ξ)


=
∑
j

α2
j

ρj
A
{
gγj (t)

}
(ρjξ)

'
∑
j

α2
j

ρj
Ĝγj (ρjξ).

(18)

By inspection,

αj = Sj

√
|ρj ||κj | (19)

satisfies Eq. 17. We resample the original discrete dictio-
nary codes to target time scale ρi by band-limited sinc in-
terpolation [39]. Finally, we substitute the resulting αj into
Eq. 2 and superpose grains to realize the desired mosaic.

4.5 Localized matching

So far we have discussed entire signals, implicitly assum-
ing them to be brief. The autocorrelogram, taken glob-
ally over a long signal such as an entire musical piece,
no longer estimates the local, stylistic characteristics. Just
as one adapts the discrete Fourier transform for long sig-
nals into the Short-Time Fourier Transform (STFT) [4],
so do we adapt the autocorrelogram mosaic method, ap-
plying it locally. A simple localization is to slice signals
into short frames of fixed duration M, which are called
grains by convention. As in the STFT, we multiply each
frame point-wise with real window function w, supported
on [0,M ] with ‖w‖ = 1. Hereafter, we assume a sine win-
dow, w(t) := 2 sin(πt/M)I[0,M ]/M. We fix hop length
H < M . Next, we localize G into a new dictionary whose
codes are precisely these time-shifted grains (disallowing
zero-energy grains).

Gw,H := {w(t)g(t− φ) : g ∈ G, φ/H ∈ Z, ‖g′‖ > 0}.
(20)

In musical material a localized dictionary tends to high re-
dundancy and marginal return on search effort decreases.
Rather than proceeding exhaustively, we keep the search
tractable by searching a pseudorandom subset of fixed size,
where the size of this pseudorandom subset is a user se-
lectable parameter.

In the synthesis stage, we localize the target signal,
fw0 (t;φ) := w(t)f0(t − φ), constructing a local mosaic
f̂w0 (t;φ) from Gw,H for φ = 0, H, 2H, . . . Finally, we su-
perpose the local mosaics into a global one,

f̂0(t) =
∑
`∈Z

f̂w0 (t+H`;H`). (21)

5. EXPERIMENTS

As an initial example we transfer style with target f0 trum-
pet solo 2 and source audio a vocal recording. 3 Audio is
sampled with a period of 1/44100s. We fix M = 8192,
H = M/2, L = 1024, C = 4, J = 1, I = 12 and rea-
sonable default parameters for the optimization routines.
Examining the spectrogram Fig. 2 illustrates phenomena
compatible with our claims: In the mosaic we observe lo-
cal features of the source with the larger structure of the
target, to wit, the pitch contours of the trumpet solo with a
spectral distribution somewhat like the human voice.

2 credit Mihai Sorohan
3 credit Emm Collins
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Figure 2. Power spectral density of signals a) source vocal
recording b) target trumpet recording and c) resulting mo-
saic. Frequency increases up vertical axis, intensity in dB
with arbitrary normalization.

We next apply the algorithm across a small corpus and
compare our results against the mosaicing algorithm NiM-
FKS [7]. 4 NiMFKS is a useful benchmark for mosaic-
ing synthesis, incorporating many different user-selectable
loss functions and decompositions methods from else-
where in the literature, and possessing openly available
code. 5 Their method generalises classical mosaicing by
using a non negative PSD factorization to further decom-
pose grains into a sparse product of activations and re-
sponses. Unlike our method it does not infer optimal time
scaling of audio.

Performance evaluation of mosaicing methods is sub-
jective. In the following, we will nevertheless attempt to
describe the behaviors of the two algorithms as objectively
as we are able. In order to challenge the NiMFKS model,
our corpus samples are tuned to a variety of different root
notes, scales and audio ranges, including Indonesian, west-
ern and centerless tunings. Style transfer is applied to ev-
ery pairing of samples. Parameters are left at default val-
ues in each algorithm. These may be heard in the sup-
plemental material. Subjectively, neither method seems
to produce naturalistic outputs for all pairs of source and
target audio. NiMFKS seems ascendant where the source
audio is polyphonic and the factorization succeeds at de-

4 It would be instructive to compare against mosaicing method Music
Retiler [1], which claims to handle time scaling of audio via a different
method should the source code become available.

5 https://code.soundsoftware.ac.uk/projects/
nimfks

composing different notes where our method cannot. On
the other hand, where the target tuning is not spanned by
the source, the sparse autocorrelogram method is able to
produce smoother and better related mosaics by transpos-
ing source grains to match the target. Occasionally the
sparse autocorrelogram mosaics sound rough during rapid
articulations; the method could possibly be improved in
these cases by adaptive selection of grain size, or tuning of
the free hyperparameters in the model, or extension with
non-randomised reconstruction methods. Even in these
cases, however, simultaneous playback of the target and
the mosaic reveals that we maintain harmonic relationships
with the target audio. As such, even this imperfect recon-
struction can be regarded as an exotic musical effect. In
summary, even at this early stage, our method succeeds in
extending mosaic methods to previously intractable tasks,
and produces musically interesting output.

6. CONCLUSION

By combining autocorrelogram feature maps and interpo-
lating matching pursuit, we have extended the library of
methods of audio mosaicing style transfer. Our method in
isolation produces interesting results on the sample data
with little tuning. Work remains to be done in analysing
the robustness and generality of the method, and selecting
optimal tradeoff of cost and quality of different style trans-
fer tasks under different choices of user parameters. More
work also remains to be done in integrating this method
with existing ones. The flexible loss function of, for exam-
ple, NiMFKS could be augmented to include autocorrel-
ogram features, and the autocorrelogram approach can be
applied to spectrally decomposed signals, which are still
audio signals. However, the ease with which we produce
good results suggests that further extensions and refine-
ments are worthy of pursuit.
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